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I. INTRODUCTION 

 
Ebola virus disease (EVD, or simply Ebola) is a rare and deadly disease that is highly transmissible from person-to-

person. It is commonly spread to people from wild animals and is spread to other humans through contact with 

bodily fluids (saliva, blood, etc.) of someone who is infected. The average fatality rate is 50%, making Ebola one of 

the most deadly diseases [1]. 

 
The Ebola virus was first documented in 1976 in Zaire, and there have been several incidences with total cases on 

the order of hundreds prior to the 2014 epidemic [1]. In 2014, West Africa saw the world’s largest and most 

complex Ebola outbreak ever recorded with 28,639 total cases [1]. Guinea, Liberia and Sierra Leone were the most 

affected countries and unfortunately also have very weak health systems as well as a lack of human and 

infrastructural resources. This lack of resources combined with a deadly disease created an epidemic never seen 

before. In order to make accurate and vital decisions during the outbreak, understanding the transmissibility of the 

Ebola was necessary in determining how to halt its spread. As data was recorded and the virus was being analyzed in 

real-time, it was apparent that this was a case where one model does not fit all. Various literature reviews have 

published finding using different compartments to model the spread of Ebola. Therefore, it is necessary to 

investigate the various methods for predicting Ebola dynamics and to compare the results against historical data. 

 

 

 

II. BACKGROUND 

 
Ebola is a deadly and infectious disease and tools are 

necessary to predict the next outbreak in order to 

minimize the size and duration of the outbreak if not 

completely prevent the outbreak. There are various 

methods to model the transmission of EVD and can 

be used to predict the next outbreak. With that 

knowledge, appropriate intervention efforts can be 

implemented in the field to curb the extent of the 

outbreak. Compartment modeling is a mathematical 

approach that is used to describe transmission among 

the compartments of a specific system. In the models 

and approaches discussed below, movement in the 

model can only stay in the initial state or go forward, 

without skipping through the states. The total 

population (N) in these models are represented by the 

total of individuals in each group. Pending the 

duration of the epidemic is being studied, this N is 

assumed to remain constant. Combinations of these 

models have been developed to achieve various 

objectives. 

 

2.1 Models 
 
The simplest compartmental model available to 

represent and study an epidemic would be the 

susceptible, infectious, and recovered (SIR) model. In 

order to utilize a SIR model, a few criteria need to be 

considered. First, the disease in study needs to have a 

severe outbreak. Everyone who is infected is 

removed from the population either through recovery 

or death. Finally, the population must be large, fixed 

in size, and is confined to a geographic region [2]. 

Mathematically, the SIR model can be simply 

denoted with the following three ordinary differential 

equations, where dS represents the change in the 

susceptible group, dI represents the change in the 

infected group, and dR represents the change in the 

recovered/removed group.  

 

 

          (1) 

 
The infected group can change over time as 

susceptible individuals become infected and infected 

individuals recover and therefore move into the 

recovered group. The parameters α and β are used, 

where α (units: time-1individuals-2) represents the rate 

of infection, β (units: time-1individuals-1) represents 
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the rate of recovery, and S(t)+I(t)+R(t)=N. The SIR 

model is a very common model used to study the 

spread of Ebola due to its simplistic nature; however, 

an SIR model may be too simple of a model to use in 

some situations. In those cases, adding another 

compartment for those who are exposed may be 

beneficial, creating a SEIR model.  

 
The SEIR model follows the SIR model but includes 

an additional compartment, exposed individuals (E). 

Because of the additional compartment, the system of 

equations expands to incorporate the dynamic 

changes caused by the exposed group. 

 

 

            (2) 

 
The infected group can change over time as 

susceptible individuals become exposed, those who 

are exposed become infected, and the infected 

individuals recover and move into the recovered 

group. The parameters ε, γ, and β are used, where ε 

(units: time-1individuals-2) represents the rate of 

exposure, β (units: time-1individual-1) represents the 

rate of recovery, γ (units: time-1individuals-1) 

represents the rate of infection, and N is the sum of 

the four groups. Simply, 1/γ is average duration of 

incubation and 1/ β signifies the average duration of 

infectiousness [3].  

 
When modeling the spread of an epidemic, it may be 

useful to scale or limit the number of susceptible 

individuals. Rachah, et al. determined that the 

number of susceptible individuals is equal to the 

highest number in the number of cases [4]. This 

scaled-down approach allows for faster computation 

while retaining accuracy.  

 

Many intervention efforts have been taken to control 

and determine epidemic size and duration. 

Interestingly, the Center for Disease Control and 

Prevention (CDC) developed a tool, EbolaResponse, 

to help predict the number of beds necessary in Ebola 

treatment units (ETUs) to help stop the spread of 

Ebola and predict the potential number of future 

cases [5]. They implemented the ‘incubating and 

infectious’ group, forming a SIIR model which is 

essentially a Markov chain model. Data from 

previous studies were used to create a lognormal 

probability distribution of being in the incubation 

state. The SIIR model also assumed that the average 

infectious state was six days and the risk of 

transmission was assumed to be equal throughout the 

six days [5]. A few limitations that can occur and 

possibly create errors would include the amount of 

underreporting, movement of individuals between 

geographic borders, and common burial practices that 

can expose healthy individuals to the Ebola virus. 

Since Ebola is a unique disease in the fact that it is 

still transmissible after the infected individual dies, it 

may be useful to add a compartment to take this 

factor into account.  

 
There are many compartments that can be further 

integrated into these models. Table A1 covers the 

various compartments commonly used in 

epidemiology and how each group is defined. 

Compartments such as Maternal Immunity (M) and 

Carrier (C) are not found in models for Ebola, 

because Ebola is not transmitted in those manners. 

The most basic compartments are S, I, and R and can 

be found in every model. Advantages of the 

simplistic model is the lower requirement of datasets 

necessary to develop the SIR model. There are 

different rates of recovery based on infectious level, 

therefore compartments E, I1, and I2 have been used 

to differentiate the groups in the population. 

Transmission of Ebola from the handling of dead 

bodies during the funeral procedures was a large 

enough contributing factor to transmission that the F 

compartment was added. Interventions (H/P/etc.) 

compartments can indicate whether its 

implementation has or will change the outcome of the 

model. Unfortunately, as the model becomes more 

complex, the dataset required grows more extensive 

in order to develop the model. This complexity can 

be difficult to gather in areas where infrastructure is 

not conducive to a standardized method of reporting, 

especially prior to a major outbreak. 

 

2.2 Parameter Estimation 
 
The parameters used to model Ebola can be 

calculated based on previous historical or current data. 

Since each compartmental model can mathematically 

be represented by a system of ordinary differential 

equations, the parameters, such as rate of infection 

and rate of recovery, can be fitted using a least-

squares fitting approach [6], [7]. Here, the sum of 

squared errors between the data and the mathematical 

solution are minimized. Assumptions in regards to 

initial conditions and stage progression are made in 
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order to solve the differential equation. In a 

deterministic model, there is no randomness or 

variation in the parameters, and therefore, the 

outcomes remain constant.  

 

Different studies used various parameters to study 

Ebola. In a study performed by Rachah, et al., a 

simulation of an Ebola outbreak was performed using 

Kaurov’s estimated parameters [4]. Kaurov’s 

estimation of parameters are used to estimate the rate 

of infection and rate of recovery where it is assumed 

that 95% of the population is susceptible and 5% of 

the population is infected making α=0.2 and β=0.1.  

 

Using the SEIR model as previously described, 

Althaus, et al. study used maximum likelihood 

estimates of the parameters. They were found by 

fitting the model created to the data with the 

assumption the number of cases and deaths were 

Poisson distributed [8], [9]. With the additional 

exposed compartment, it was determined that the 

model created by Althaus, et al. fit the data well and 

suggested that control interventions were not 

successful [8]. Unfortunately, a limitation of this 

model would be that the model could not account for 

fluctuations in the number of new cases and that the 

transmission rate decays rapidly from control 

measures after the first infectious case.  

 
2.3 Measurement Performance 

 
There are multiple ways to measure model 

performance. Comparing the predicted data with the 

actual data would allow for one to assess the 

accuracy of the measurement. The root mean square 

error (RMSE) was used in order to assess the quality 

of the estimators, how well the model fit to the data 

used to develop the model, and the quality of the 

predictors, how well the model fits to the data 

predicted. This metric allows for variability in data 

length between model during comparisons and 

therefore providing a level of robustness.  

 
To evaluate how intervention implementation 

impacted the epidemic, a multivariate uncertainty and 

sensitivity analysis can be performed. The Legrand 

group varied specific intervention parameters 

mentioned earlier and simulated 700 epidemics and 

computed the mean size of these epidemics. The 

partial rank correlation coefficients (PRCCs) were 

computed between each varying parameter and the 

mean size and quantifies this linear relationship 

between the intervention and epidemic size [10]. 

 

III. METHODS 
 

3.1 Data Collection 

 
In order to properly model the Ebola virus, three 

datasets were utilized, one from the World Health 

Organization (WHO), one from the Center for 

disease control and Prevention (CDC), and the one 

from Virginia Polytechnic Institute and State 

University (Virginia Tech). The WHO dataset covers 

the most recent 2014 Ebola outbreak starting August 

29, 2014 while the CDC data starts in March 2014. 

The WHO and CDC datasets provide us with 

cumulative case information for different infection 

status, whereas the Virginia Tech dataset provides 

data that will allow for the evaluation of the 

intervention methods implemented in the field in 

West Africa.  

 
CDC provides cumulative number of infected cases 

for Guinea, Liberia, and Sierra Leone, while WHO 

provides epidemiological data covering cumulative 

confirmed cases in Guinea, Liberia, and Sierra Leone. 

The data are separated either by age groups, 0-14, 15-

44, and 45+ years, or gender [11]. The data can be 

sorted by country and then divided into the following 

groups: confirmed, probable, and suspected. The total 

population size is approximately 15,889 when 

looking at all three countries. Depending on how the 

data is subdivided, some of the counts will vary due 

to cases where the gender is known but the age was 

not and vice versa, which results in variable total 

counts.  

 
Caitlin Rivers, a computational epidemiologist at 

Virginia Tech, has a curated, de-identified, and 

publicly available Ebola dataset on GitHub [12], [13]. 

The dataset contains publicly released data from the 

World Health Organizations as well as the Ministries 

of Health of the affected countries. It specifically 

only contains laboratory confirmed, suspected or 

probable cases of the disease as Rivers claims that is 

the best representation and estimation of the state of 

the Ebola epidemic. The data are separated by many 

variables; however, each country in question has a 

different number of variables based on the data that 

was collected. There are many variables that are 

found in each country’s dataset including total deaths, 

gender (male or female), hospital admissions, and 

suspected/confirmed/ probable cases.  
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Figure 1: Visualization of data cleaning and linear 

interpolation process  

 

Cumulative drops were corrected through linear 

interpolation of the counts between the two closest 

enclosing report dates. Specifically, if a, b, and c 

were the counts collected at three incrementing 

timestamps, where a<c and b>c, we replace b with 

b’=(c-a)/2, so that a<b’<c. Missing dates were filled 

using linear interpolation; if no data were reported 

between dates x and y, where x<y and y-x=n>1, then 

the count for date x+k is calculated as a+k(b-a)/n, 

where a and b are the counts collected on x and y, 

respectively, and x+k<y. 

3.2 Data Cleaning 
 

Once the datasets were collected, they were cleaned 

first by adjusting cumulative cases to remove 

negative changes in exposed, infected, and intervened 

individuals through a linear interpolation process. 

The interpolation process is the most conservative 

process available and is illustrated in Figure 1. The 

data were then normalized with the time intervals of 

the data report and the initial population sizes were 

scaled. Compartmental models require that the input 

data have equal time intervals. Data for missing dates 

were filled in through linear interpolation on the 

counts from the two closest enclosed reporting dates 

described below Figure 1. The initial population size 

for each country of interest were downsized to 2000 

individuals. Rachah et al. also reduced the initial 

number of individuals based and it did not affect the 

model results. The new number of individuals was 

still able to produce expected results. After 

performing the dataset cleaning, the curated dataset 

was then used for training and testing of the three 

compartmental models of interest. Table 1 lists the 

details of this finalized dataset.  

 

 

 

3.3 Workflow 

 

The cleaned data set are partitioned (explained in 3.6 

under cross-validation) into seven parts, where one is 

left out for external validation, and are loaded into 

the workspace. The population N is using the same 

approach as described in Rachah et al. The rates of 

movement for the compartments of interest are 

calculated based on these inputs. 

 

Next, the initial conditions to develop the 

compartmental models are defined. The initial data 

point in the time window of interest is taken. The 

relevant parameters for a specific model are 

initialized. The time range of interest is defined.  

These initial conditions are inputted into a built-in 

MATLAB function “fmincon” that optimizes the 

parameters of interest. The parameter values are 

restricted to the range of [0,1]. Parameter 

optimization is performed by minimizing the root 

mean squared error when comparing the model 

predictions to the dataset held in the cross validation. 

This optimization was done for the six folds in the 

cross-validation implemented. The parameters values 

are calculated based on solving a system of ordinary 

differential equations that have been defined for each 

model (Equations 1-3).  

Table 1: Data Span, Number of Days Reported, and Number of Weeks Covered by Final Dataset

 

Country Model Data Span 
Number of Days 

Reported 

Number of Weeks 

after Interpolation 

Liberia 
SIR 3/1/2014-2/17/2016 156 99 

SEIR, SEIInR 7/1/2014-10/5/2014 47 14 

Sierra Leone 
SIR 3/1/2014-2/17/2016 156 91 

SEIR, SEIInR 8/13/2014-10/13/2014 15 4 

Guinea SIR 3/1/2014-2/17/2016 156 103 

135

140

145

150

155

Day 1 Day 2 Day 3

Interpolation Process

Orig Cumulative

Adjusted Cumulative
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Figure 2: Workflow 

 

Once the six sets of parameters are calculated, the 

average parameter value was taken and used as the 

final model. These final parameters are externally 

validated with the seventh partition, where the RMSE 

is calculated for each model. This workflow can be 

visualized in Figure 2. 

 
3.4 Model selection 
 
In order to investigate different methods of predicting 

the dynamics of EVD, three compartmental models 

will be developed in this study, SIR, SEIR, and 

SEIInR (susceptible, exposed, infectious, 

intervention- those at a treatment center, and 

recovered).  

 

The SIR model will describe how the population 

transitions from groups S(t) to I(t) and I(t) to R(t). 

This is the most basic compartmental model and has 

been chosen to see if it can model and predict Ebola 

outbreaks and therefore, reduce resources allocated to 

collecting more information for only a marginally 

better model.  

 

The SEIR model will follow the same flow with the 

exception of the added exposed compartment because 

EVD has a long enough incubation period of 2-21 

days but often times falling around 8 days [CDC].  

 

The SEIInR model will include an addition 

intervention group in order to understand how 

different intervention implementations affected the 

outcome of the epidemic. More specifically, the 

intervention of interest is the rate of people infected 

who go to the hospital. Modulating the availability of 

hospitalizations would give insight to whether an 

increase in clinics and hospital centers would be 

enough to prevent an outbreak and how an 

organization should allocate their limited resources 

and funds to best minimize or avoid an outbreak. 

 

 

                 (3) 

 

 
Assumptions are made for these models such as the 

population can be grouped into one of the 

compartments of a specific model. Susceptible 

individuals coming into contact with infected 

individuals will be exposed and may be infected at 

some given probability. For those recovered and 

survived are assumed to have immunity to the disease, 

as stated in literature.  

 
The parameters of these models are defined as the 

following: ε (units: time-1individuals-2) is the rate of 

exposure, β (units: time-1individuals-1) is the rate of 

recovery, γ (units: time-1individuals-1) is the rate of 

infection post-incubation, 𝛿 (units: time-1individuals-1) 

is the rate those undergoing the intervention, and 𝜇 

(units: time-1individuals-1) is the rate of recovery 

post-intervention. Ultimate, the expected outcome 

will be infection counts.  

 
3.5 Performance and Comparison Metrics 

 

To evaluate the performance of each individual 

model, the Root Mean Squared Error (RMSE) 

measure was used. The RMSE of predicted values �̂�𝑡 
for times t of a dependent variable 𝑦𝑡  is computed for 

n different predictions as in the equation below: 

 

           (4) 
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The goal of this project is to explore the model and 

corresponding parameters that minimize the RMSE. 

 

For each model, cross-validation will be performed 

by optimizing model parameters using a training set 

and evaluating accuracies using an external test set. 

 
3.6 Cross-validation 

 

The data are partitioned into a training set, which 

contains data collected on Mondays through 

Saturdays, and a test set, which contains data 

collected on Sundays. We then performed six-fold 

cross-validation on the training set for each 

compartmental model: 

 

1) Data Partition. The training set was partitioned 

into six folds, where each fold contains time series 

data (infected, exposed, intervention) collected on 

Monday, Tuesday, Wednesday, Thursday, Friday, 

and Saturday, respectively. The number of weeks 

covered by the data for each country and model are 

listed in Table 2 below. 

 

Table 2: Number of Data Points (Weeks) in Each 

Fold by Model Type and Country 
 

 Liberia 
Sierra 

Leone 
Guinea 

SIR 98 90 102 

SEIR 13 3 N/A 

SEIInR 13 3 N/A 

 

2) Cross-validation. Leaving out one fold at a time, 

For each week, the average count was taken over the 

five folds, each model was trained using the averaged 

data, and the parameters obtained were used to test 

the model on the left-out fold to obtain the RMSE.  

This process was repeated 5 times, leaving out one 

fold at a time. 

 

3) Model comparison. Parameters obtained from the 

six-fold cross-validation were averaged to obtain the 

parameters for modeling the external test set 

(Sundays’ data). The training RMSEs and testing 

RMSEs were used to compare the performance of the 

three compartmental models for each country. 

 

3.7 Parameter Estimation 

 
When initializing the parameters and optimizing the 

parameters using the built-in MATLAB function of 

“fmincon”, a constrained minimization method using 

the Nelder-Mead algorithm, limits the values of the 

parameters between zero and one. This constraint is 

necessary for this model as the parameters describes 

the rate of forward movement of individuals from 

one compartment to another. Therefore, negative 

rates indicating reverse movement of individuals, and 

numbers greater than 1 indicating more individuals 

than those in the compartment of interest moved into 

another are illogical. Initially, a grid search was 

implemented in order to find the best combination of 

each parameter value that were constrained between 

0 and 1 with a step value of 0.01 in order to better 

select parameter initialization values. However, this 

process was computationally expensive and did not 

yield significantly better results.  

 

3.8 Model Development 

 

A graphical user interface (GUI) was developed in 

parallel. The GUI allows for users to interactively 

compare the three compartmental models of interest 

(SIR, SEIR, SEIInR) using the curated dataset based 

from CDC, WHO, and Virginia Tech. The GUI 

optimizes the parameter for each set of ordinary 

differential equations for all three models. The 

interface allows the user to select a country to 

analyze (Liberia, Guinea, or Sierra Leone) and the 

models will automatically generate and iterate 

through all the cross-validation folds. The user is 

given the option to input their own parameters. The 

model will update accordingly and a RSME value 

will also be produced for the new model with the 

inputted parameters. Each model also features a 

parameter diagram for intuitive understanding of the 

parameter meanings as well as an error chart. 

Furthermore, internal and external validation table 

results are included to validate the results. A 

screenshot of the GUI can be seen in Figure A1.  

 

IV. RESULTS 

 

4.1 Liberia 

 

When Liberia is chosen as the country of interest in 

the GUI, parameters for three models were computed 

along with the RSME for the internal and external 

validation.  

 

The SIR model resulted in the average rate of 

infection α = 0.4128 week-1individual-2 and the 

average rate of recovery β = 0.0946 week-1individual-

1. This average was calculated based on the optimized 

parameters for each fold in the internal cross 

validation. In the external validation of the model, the 

RSME = 0.0308.  

 

The SEIR model resulted in the average rate of 

exposure ε = 0.7149 week-1individual-2
, the average 
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rate of infection γ = 0.6381 week-1individual-1, and 

the average rate of recovery β = 0.1583 week-1 

individual-1. This average was calculated based on the 

optimized parameters for each fold in the internal 

cross validation. In the external validation of the 

model, the RSME = 0.0305.  

  

The SEIInR model resulted in the average rate of 

exposure ε = 0.7935 week-1individual-2
, the average 

rate of infection γ = 0.689 week-1individual-1, the 

average rate of recovery β = 0.0999 week-1individual-

1, the average rate of hospitalization δ = 0.1008, and 

the average rate of recovery from hospitalizations μ = 

0.4814 week-1individual-1. This average was 

calculated based on the optimized parameters for 

each fold in the internal cross validation. In the 

external validation of the model, the RSME = 0.0315.  

 
4.2 Sierra Leone 

 

When Sierra Leone is chosen as the country of 

interest in the GUI, parameters for three models were 

computed along with the RSME for the internal and 

external validation.  

 

The SIR model resulted in the average rate of 

infection α = 0.5961 week-1individual-2 and the 

average rate of recovery β = 0.2096 week-1individual-

1. This average was calculated based on the optimized 

parameters for each fold in the internal cross 

validation. In the external validation of the model, the 

RSME = 0.0016.  

 

The SEIR model resulted in the average rate of 

exposure ε = 0.846 week-1individual-2
, the average 

rate of infection γ = 0.8174 week-1individual-1, and 

the average rate of recovery β = 0.0534 week-1 

individual-1. This average was calculated based on the 

optimized parameters for each fold in the internal 

cross validation. In the external validation of the 

model, the RSME = 0.0083.  

 

The SEIInR model resulted in the average rate of 

exposure ε = 0.9966 week-1individual-2
, the average 

rate of infection γ = 0.9956 week-1individual-1, the 

average rate of recovery β = 6.18e-4 week-1 

individual-1, the average rate of hospitalization δ = 

6.18e-04, and the average rate of recovery from 

hospitalizations μ = 0.5269 week-1individual-1. This 

average was calculated based on the optimized 

parameters for each fold in the internal cross 

validation. In the external validation of the model, the 

RSME = 0.0059. 

 
 

 

4.3 Guinea 

 

When Guinea is chosen as the country of interest in 

the GUI, parameters for the available models were 

computed along with the RSME for the internal and 

external validation.  

 

The SIR model resulted in the average rate of 

infection α = 0.5332 week-1individual-2 and the 

average rate of recovery β=0.3542 week-1 individual-1. 

This average was calculated based on the optimized 

parameters for each fold in the internal cross 

validation. In the external validation of the model, the 

RSME = 0.0132. 

 

The SEIR and SEIInR models were not computed 

because of the lack of a dataset to develop the model. 

 

4.4 Summary 

 

Summary of the average parameters calculated after 

internal cross validation are found in Tables 3-5 

below. 

 

Table 3: SIR average parameters 

Country Alpha Beta 

Liberia 0.4128 0.0946 

Guinea 0.5332 0.3542 

Sierra Leone 0.5961 0.2096 

 

Table 4: SEIR average parameters 

Country Epsilon Gamma Beta 

Liberia 0.7149 0.6381 0.1583 

Sierra 

Leone 
0.8460 0.8174 0.0534 

 

Table 5: SEIInR average parameters 

Country Epsilon Gamma Beta Delta Mu 

Liberia 0.7935 0.6890 0.0999 0.4814 0.0315 

Sierra 

Leone 
0.9966 0.9956 6.2e-4 6.2e-4 .0059 
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Summary of the average training RMSEs for each 

model and country and the corresponding external 

validation RMSEs are listed in Table 6. Specific 

parameter values for each country are described in 

the sections 4.1-4.3. 

 

Table 6:  Summary of Training and Test RMSEs. 

 

Country Model 

Average 

Training 

RMSE 

External Test 

RMSE 

Liberia 

SIR 0.0392 0.0308 

SEIR 0.0392 0.0305 

SEIInR 0.0402 0.0315 

Sierra 

Leone 

SIR 0.0126 0.0016 

SEIR 0.0154 0.0083 

SEIInR 0.0112 0.0059 

Guinea SIR 0.0170 0.0132 

 

 

V. DISCUSSION 
 

Estimated model parameters were compared with the 

Spatial Temporal Epidemiological Modeler (STEM) 

Tool [15]. This tool outputs ranges for the parameters 

estimated for the SIR and SEIR models. The SIR and 

SEIR parameter estimations fell within these 

outputted ranges, which further validated our results.  

 

The dataset was partitioned into training and testing 

sets based on days of the week due to the time-

dependent nature of the compartmental models. This 

method is essential for building accurate models 

although it may introduce bias as data collection may 

be regularly scheduled and therefore affect our 

training set. 

 

When comparing the three compartmental models 

with each other, it is apparent that the SIR model 

overall performed the best. The SEIR model 

performed marginally better than the SIR model 

under the Liberia case; however, it is not significant. 

Intuitively, it may seem that the SIR model would 

perform the worst as it has the fewest compartments; 

however, the models are highly dependent on the 

quality of the inputted data. In this case, the exposed 

data was not ideal and made the SIR model the 

overall stronger performer.  

Furthermore, this highlights the fact that the SIR 

model is a solid model in predicting the flow of 

infectious diseases. Researchers out in the field may 

have limited resources in data collection and may not 

be able to gather enough data for an exposed 

compartment. The results indicate that the most basic 

compartmental model is sufficient for modeling and 

predicting the spread of Ebola, which can lower field 

and data collection costs. In order for the SEIR and 

SEIInR to have better model performance, more data 

would be required.  

 

When comparing the parameters amongst the 

countries, Sierra Leone consistently had the highest 

infection rates than Liberia in every model, which 

parallels with the raw cumulative data where Sierra 

Leone has the steepest curve indicating higher 

infection rates. 

 

Looking at the three compartmental models for a 

specific country, the infection rate α = 0.4128 in the 

SIR model is similar to the corresponding infection 

rates in the SEIR and SEIInR models (ε*γ ≈ α) where 

ε*γ = 0.4562 and ε*γ = 0.5467. The infection rates 

for each of the models are similar confirming the 

calculated parameter values. 

 

For Sierra Leone, the SEIR and SEIInR model 

resulted in extreme parameter values (closer to either 

0 or 1. This result is likely due to the limited amount 

of data available to develop the model. The number 

of data points available and implemented was three. 

Therefore, more information is necessary to build a 

model that better reflects the infection rate of EVD in 

this country.  

 

VI. FUTURE WORK 

 
Modeling of infectious diseases is vital to 

understanding how disease spreads from person-to-

person. Defining errors differently can yield possibly 

different results and should be experimented with. 

Since epidemiology proposes a multitude of 

compartments, further additions of various 

compartments can be tested. Ebola and other diseases 

do not have geographic limits. Being able to apply 

these models to other countries in West Africa can 

also help understand the spread and predict the 

dynamics of Ebola.  
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Table A1: Various Compartments in Epidemiology 

 

 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

Compartments Definition 

Susceptible (S) Those who are at risk of disease 

Exposed (E) Those who have been exposed to the disease 

Infectious (I) Those who have contracted and are infected with the disease 

Recovered (R) Those who are no longer infected or dead and buried 

Maternal Immunity (M) Those who are born immune to disease from maternal antibodies 

Funeral (F) Those who have died from the disease, but not buried 

Carrier (C) Those who naturally carry the disease 

Infectious stage 1 (I1) Those who are in first stage of infection 

Infectious stage 2 (I2) Those who are in second stage of infection 

Intervention (H/P/etc) Those who have been hospitalized/received treatment 



 

 

Figure A1: Graphical User Interface (GUI) Screenshot for Each Country of Interest 

 

 
 

 

 



 

 

 
 

 

 

 

 


